
AD-A245 224 k-

* III I~ I ~II I~I ~IUNCLASSIFIED

Am 3 0199Zg

AFIT/EN-TR-9 1-9 SJU~9a1
Air Force Institute of Technology

Ada Interfaces to the

X Window System

Gary W. Klabunde Mark A. Roth
Capt, USAF Maj, USAF

30 December 1991

Approved for public release; distribution unlimited

92 1 28 096 92-02315
~~IIuI IIII I l I III gil II II~

Ada Interfaces to the X Window System

Gary W. Klabunde
Mark A. Roth

December 30, 1991

*1
1 Introduction

The user interface is the com;nent o'Ithe plication through whic the user's actions are translated into
one or more requests for ser icesof the a lications, and that pr ides feedback concerning the outcome
of the requested actions. Bpeause of e importance of this i eraction, the design of efficient and easy
to use user interfaces is re ving inc ased attention. Most p ple now realize that if an application has
a user interface that is unfriendly or difficult to use, it i probably going to sit on the shelf unused.
Also, user interfaces using some type of windowing syste are fast becoming a common feature of most
computer systems. As a result, users tend to expect all a ication programs to have a professional, polished
user-friendly interface([t1 nfortunately, the Ada la uage has only rudimentary input and output (I/0)
capabilities. As such, user interface prograrnm using Ada had to develop some other methods for
anything except simple line or character

This is not the case, however, for some other programming languages. The introduction of the X
Window System in the mid 1980's changed the way user interfaces were developed in the language C. The X
Window System, or X, is a collection (library) of subroutines that allows for the creation and manipulation
of graphical user interfaces using multiple windows. These subroutines provide the mechanism to achieve
the goals previously discussed. -

Recognizing the importance of X to the development of user interfaces, some members of the Ada
community began working on ways access the X Window System from within Ada programs. The first
efforts involved developing bindings to the X routines. Subsequent efforts have looked at ways to implement
X in the Ada language.

This paper discusses some of the more significant accomplishments in accessing X from Ada programs
Particular attention is paid to the bindings developed by Stephen Hyland formerly of Science Applications 7/
International Corporation and E.J. Jones of Boeing Aerospace Corporation. A discussion is presented
of how these bindings were successfully used at the Air Force Institute of Technology for the design and
implementation of a user interface for the Saber computer wargame. The paper ends with a description of
the limitations of the bindings.

2 Ada and the X Window System

Originally, Xlib, Xt Intrinsics and most widget sets were written in the programming language C. Until a
few years ago, there was no way for an application program written in Ada to use the X Window System.
Recent efforts have taken two approaches: Ada bindings to X and Ada implementations of the X libraries.
Most of the Ada bindings are tied to particular operating systems and will only work with a particular Ada
compiler. The Alsys, Meridian, and Verdix compilers, along with their derivatives, are used most often for
the bindings [1].

Applicaton

Program

(Ada)

SAIC Bindings (Ada)

Xlib (C Routines)I
X Server

Figure 1: Application Program Configuration Using the SAIC Bindings

2.1 Ada Bindings to X

In 1987, the Science Applications International Corporation (SAIC) developed Ada bindings to the Xlib C
routines. Their work was performed under a Software Technology for Adaptable Reliable Systems (STARS)
Foundation contract, and is therefore in the public domain. According to Kurt Wallnau, "... a substantial
effort was made to map the C data types to Ada, and do as much Xlib processing in Ada as possible before
sending the actual request to the C implementation" [9:5]. The actual Ada interface is accomplished
through the use of Ada pragma interface statements [3]. Put simply, the pragma interface construct allows
an Ada program to call subprograms written in another language [2]. Figure I shows the configuration of
an Ada program using the SAIC bindings to interface with Xlib. In this figure, the application program
has no access to any toolkits or widget sets.

In a manner similar to that used by SAIC, the Boeing Corporation recently developed Ada bindings
to a large subset of the Xt Intrinsics and the Motif widget set. Their code also provides access to a very
limited subset of Xlib functions and data types. Like the SAIC code, Boeing's effort was sponsored by
a STARS contract [51. For the most part, the subroutine names and parameter lists closely mirror the
actual C routines. Also, Boeing added a few subprograms to assist in the building of some commonly used
parameter lists. The bindings require the Verdix Ada Development System (VADS) version 5.5 or higher
to execute. While the documentation on the software is relatively sparse, it does indicate which modules
would require changes in order to port the bindings to other systems.

Figure 2 shows the configuration of an Ada program using only the Boeing bindings. The dashed lines
indicate that a small portion of the Xt Intrinsics and Motif functions are unavailable to the Ada program.
Also, the application program cannot access the majority of the Xlib functions.

The Ada application program accesses the Xt Intrinsics and Motif routines by calling the appropriate
suibprogram in the bindings. For the most part, the bodies of the called subprograms contain code to
cmovert thr' Boeing Jata structures and ,ypcs to the types needed by the corresponding C code. The
slibprogram bodies then call internal procedures or functions that are bound to the Xt Intrinsics or Motif
routines pmsing in the converted parameters.

2

Aoaession For

NTIS GRA&I
DTIC TAB 5

Application Unann wc ed [
Program (Ada) Justiflertion

j Boeing Bindings

(Aa) ey
Motif Widgets Distributiozi/
(C Routines)lC Rotines)]Availability aodesXt Intrnsics-

(C Routines) ~Va ili eunad/o

Xlib (C Routines) D i;

X Server

EE.- I..

Figure 2: Application Program Configuration Using Boeing's Bindings

The bindings developed by Boeing and the SAIC are available at no cost to the Department of Defense.
Recently, several other corporations have also developed bindings that are available for purchase [1]. These
companies have basically taken one of two approaches. Some have followed the approach taken by the
SAIC and Boeing. Others, such as Hewlett-Packard, took an alternative approach. To alleviate the need
for much of the type conversion used by the SAIC and Boeing bindings, Hewlett-Packard binds the Ada
subroutines directly to the corresponding C code. This results in very little code in the package bodies.
To accomplish this, they make heavy use of Ada access types.

2.2 Ada Implementations

The USAF Electronic Systems Division recognized the need to write X Windows application programs in
Ada at a higher level than through Xlib alone. In 1989, they sponsored a STARS Foundation contract to
further research the capabilities of interfacing Ada and the X Window System [4]. The resulting reports
documented efforts at integrating Ada with the X Toolkit (Xt).

As part of this STARS contract, Unisys Corporation developed an Ada implementation of (not bindings
to) the X II R3 version of the Xt Intrinsics. "Ada/Xt," as it is called, "provides an intrinsics package which
provides the functionality of Xt used to manage X resources, events and hierarchical widget construction"
[10:11. This software package uses a modified and corrected version of the SAIC bindings to interface to
Xlib. Ada/Xt also includes a sample widget set consisting of ten Athena widgets and two lIP widgets [10].

Unisys elected to develop an Xt implementation rather than Ada bindings, as SAIC did. The reasons
for this included [9:9-10]:

1. The issue of widget extensibility. Ada bindings would require that new widgets be pro-
grammed in C.

2. The issues of inter-language runtime cooperation.

:3, The issues of runtime environment interaction.

3

Application
Program (Ada)

Widget Set
(Ada)

Ada/Xt
(Ada Xt Intrinscs)

SAIC Bindings (Ada)

Xlib (C Routines)

X Server

Figure 3: Application Program Configuration Using Unisys' Ada/Xt

Figure 3 represents a typical Ada application program using the Ada/Xt interface. The Ada application
code can make use of the provided widgets, make calls to Ada/Xt, or make calls directly to the Xlib via the
modified SAIC bindings. Thus, the full flexibility of an X application program written in C is maintained.

3 Saber: A Sample Application

Some user interfaces can be implemented by simply calling subroutines in the Xt Intrinsics and Motif
widget set. Others may require additional calls to selected Xlib routines. The object-oriented graphical
user interface for the Saber wargame [6] developed at the Air Force Institute of Technology fits into the
latter category. Displaying the graphical symbols for the airbases, aircraft missions, and land units required
the use of low-level Xlib subroutines.

Due to the need to access the Xlib, Xt Intrinsics and Motif libraries, it was clear that, as a mininmum,
the SAIC bindings would have to be used. The choice remained of whether to supplement it with the
Boeing bindings or the Ada/Xt software developed by Unisys. Using the Ada/Xt software would have
required the full or partial development of an Ada implementation of the Motif widget set. The Boeing
software, on the other hand, already had bindings developed for Motif. Thus, we decided to utilize the
Boeing bindings in combination with the SAIC software to develop the Saber user interface.

The Saber user interface was also designed to use a hexagon (hex) widget designed by the Air Force
\Vargaming Center (AFWC). This object-oriented widget contains routines to create and manipulate
hexboards. Routines are provided to display certain features inside of-a hex. These features include
rivers, roads, cities, city names, forestation, and background color. Since the hex widget was written iII
lie C programming language, Ada bindings had to be developed. These hex bindings were modeled after

Boeing's bindings to the Motif widget set. Each procedure exported by the hex widget had to have a cor-
responding Ada procedure. To aid in understanding, the Ada procedure nanes were given the same nams
as their C counterparts except that underscores were inserted between words. Thus, the C procedure "llx
SetlIex Label" became "llx-SetjlexLabel".

4

Saber User Interface

Boeing Bindings Hex Bindings
SAIC

Motif Widgets Hex Widget Bindings

Xt Intrinsics

Xlib

Figure 4: User Interface Relationship to the Ada Bindings

3.1 Combining the Ada Bindings

The relationship between the Saber user interface and the various Ada bindings is shown in Figure 4. This
figure accurately reflects that the Boeing software contains bindings to a small subset of the Xlib functions
in addition to the bindings to the Xt Intrinsics and Motif widget set. The user interface may make calls
to the Boeing bindings, the SAIC bindings, and the hex widget bindings. In fact, interactions between the
application program aad the X Window System are made solely through these bindings.

The Boeing bindings were the primary means of interfacing with the X Window System, while the
SAIC bindings were used primarily for the creation of the graphical unit symbols. Making the few calls to
the SAIC bindings was not straightforward because of inconsistent types used by the two sets of bindings.
Some inconsistencies were resolved by simple type conversion while others required the addition of new
subroutines to the software.

3.1.1 Type Conversions.

By nlecessity, the Boeing software contains Ada declarations of a few low-level Xlib routines. These dec-
larations for such things as the X Window System display, windows, and drawables were needed because
the Xt Intrinsics provides functions to return these values that are created when the connection with the
X server is established and windows are displayed on the screen.

Several of the SAIC procedures used to create the unit symbol pixmaps required these values as pa-
rameters. Two methods were used to convert the values to the types needed by the SAIC code. The first
was a simple type conversion as in the following example that converts a float number to an integer:

integer-number := integer(float_number);

The second method used unchecked conversion, a predefined generic function provided as part of the
Ada language. This generic function had to be instantiated with a source type and a target type for each
7oiiv,.rsioi to be performed. An exaimiple instantiation to convert, a variable of type "l)isplayPoiiiter"

5

returned by Boeing's XtLDisplay function to a variable of type "Display" for use in the SAIC routines
follows:

function DisplayIdFromXtDisplay is new Unchecked-Conversion
C Source => XLIB.DisplayPointer,
Target => Xindows.Display);

The unchecked conversion utility allows a sequence of bits, an address in the above example, to be
treated as a variable of two different types. However, this capability should be used with caution. As
Cohen writes, "Abuse of this capability can subvert the elaborate consistency-checking mechanisms built
into the Ada language and lead to improper internal representations for data"[2:804]. For the Saber user
interface, however, this was the only way to pass certain variables created through the Boeing bindings as
input parameters to the SAIC subroutines.

3.1.2 Problems With SAIC Data Structures.

Since the initial connection with the X server was made through the Xt Intrinsics vit the Boeing bindings,
and not through the SAIC code, several internal SAIC data structures were not initialized. Because these
data structures were not initialized, some functions provided by the SAIC bindings could not be used.

Two of the functions that fell into this category were Default-Depth and Root.Window. The results
returned by these functions were needed for the creation of the unit symbol pixmaps. To obtain these
values, a binding was created for each function and added to the Boeing bindings. Before the values could
be used by the SAIC subroutines, however, they had to be converted to the corresponding SAIC types. The
value returned by Root- Window was converted using the unchecked conversion described in the previous
section, while the value returned by DefaultDepth was converted through simple type conversion.

4 Limitations of the Bindings

The bindings written for Xlib, Xt Intrinsics and Motif widget set proved to be an indispensable part of
the Saber user interface. While there were some weaknesses noted in the software, as a whole the bindings
were able to directly or indirectly satisfy the requirements for the user interface. One problem common
to the bindings is that they were designed for specific versions of the X software. Specifically, the SAIC
bindings are for X11R3 and the Boeing bindings are for Motif V1.O.

4.1 Boeing Bindings

The first thing one notices when looking at the Boeing software is the lack of documentation. For the most
part, the only documentation is in the form of section titles which separate the subroutines into topical
categories. Thus, it would help if the application programmer is already familiar with the Xt Intrinsics
and Motif widget set before trying to use the Boeing bindings. Furthermore, a few of the subroutines
do not have nice, clean bindings to their corresponding C routines. These Ada subroutines use sparsely
documented data structures that are defined within the bindings and that have no counterpart in the C
code. It takes some time to learn what these data structures are for and how to use them properly.

A second weakness is that the bindings do not cover every Motif and Xt Intrinsics function. This fact
is made clear in a "README" file that comes with the software. Some of the "missing" procedures can
be added without too much difficulty. Other functions require a little more thought.

The third drawback to using the Boeing bindings is that they are currently tied to the Verdix Ada
Development System (VADS) version 5.5 or higher. The bindings make use of the "CStrings", "AStrings",
and "Command-Line" packages provided with the VADS library. The use of these packages restricts the
portability of the application software. The "README" file included with the Boeing bindings indicates
which modules would have to be changed to port the software to machines with different Ada compilers.
[lowever, the required changes should not be attempted by a novice Ada programmer.

6

4.1.1 Hardware Dependencies.

Even if your system does have VADS version 5.5 or higher, there is no guarantee that the Boeing bindings
will work correctly. This fact was determined the hard way when attempting to use the bindings on a Sun
386i machine running VADS version 5.7 with Unix. Several test programs were written to gain familiarity
with the bindings. However, they aborted with "Segmentation Faults" when executed. Analysis of the
code showed that they were syntactically and semantically correct.

It was later determined that there were two problems, neither of which were caused by the Boeing
bindings or the test programs. The causes of the problems were found in the August, 1991 edition of the
V4DS Connection. According to the Verdix Corporation, there are three potential problems areas to be

aware of when writing programs that interface with C. These are parameter passing conventions, register
usage, and parallelism. In this case, it was the first two areas that were causing the test program to abort.

The Vcrdix Corporation described the parameter passing conventions as follows[8:8I:

In many cases, C does not use the same parameter passing conventions as Ada. When calling
C from Ada this is not a problem, because VADS automatically generates a C calling sequence
whenever pragma INTERFACE is used. When calling Ada from C, however, there can be a
problem. Verdix has implemented pragma EXTERNAL, which will cause an Ada subprogram
to accept a C calling sequence, but this is only available in version 6.0.5 and above.

The problem encountered with register usage had to do with differences in the ways Ada and C use
registers. According to the Verdix Corporation[8:8]:

For the 386.. .C expects the call to save and restore any registers it modifies, other than eax.
Ada expects the caller to do the saving. This works fine when Ada calls C, but screws things
up when C calls Ada. These register saves must be done manually, through the use of machine-
code insertions.

At first glance, it did not appear that these issues would be causing the problems. It was obvious
that Ada was making calls to C through the Boeing bindings, but it was not readily apparent that C was
making any calls back to Ada. However, C was making calls to Ada inside of the XtMainLoop procedure.
Specifically, after the pushbutton is pressed, the C procedure XtDispatchEvent eventually causes control
to be passed back to the Ada callback procedure that was registered with the pushbutton. It was at this
point that the abovementioned problems caused the "Segmentation Fault".

However, it should be stressed that this was not a problem with the Boeing bindings. Rather, it is
inherent in the way callback procedures are dispatched. The test programs and the Boeing bindings worked
correctly when the software was executed on a Sun Sparc Station 2.

4.2 SAIC Bindings

A problem was also encountered with the SAIC bindings. These bindings were primarily used for the
creation of the graphical symbols used to represent the air and land units in the Saber user interface.
However, some problems were found when trying to read in the bitmap data created with tile Bitmap
editor provided with the X Window System software. This simple drawing program allows an application
programmer to interactively create bitmap patterns. The pattern is saved in a special format that can be
read in by an application program through calls to appropriate Xlib subroutines.

Analysis of the errors revealed that the SAIC programmers made a previous attempt to correct this
problem. A solution to the problem was coded and tested that solved the problem without creating any
new errors.

5 Conclusion

In this paper we have presented a brief overview of the X Window System along with recent efforts for
incorporating its use into Ada programs. One method involving the use of Ada bindings to X was presented

7

in some detail. While there were a few exceptions, most of the Ada subprograms bear a close resemblance
to their C counterparts. Thus, anyone familiar with the calling sequences for the Xlib, the Xt Intrinsics
and the Motif widget set should be able to understand the functionality of Ada programs that use the
Boeing and SAIC bindings. A detailed example of using these bindings can be found in [7].

The continued use of the SAIC and Boeing bindings is encouraged for the development of graphical
user interfaces in Ada.

Acknowledgements

The research for this paper was supported by a grant from the Air Force Wargaming Center, AU CADRE/WG.
Maxwell AFB, AL, 36112.

References

[1] Ada Information Clearinghouse. Available Ada Bindings. Draft. Lanham, MD, October 1991.

[2] Cohen, Norman H. Ada as a Second Language. New York: McGraw-Hill, 1986.

[3] Hyland, Stephen J. and Mark A. Nelson. "Ada Bindings to the X Window System." Ada computer
software source code, 1987.

[.4] Interface Standards Informal Technical Data, Ada Interfaces to X Window System. Software Technol-
ogy for Adaptable Reliable Systems (STARS) Contract F19628-88-D-0031, Publication No. GR-7670-
1069(NP), Reston VA: Unisys Corporation, March 1989 (AD-A228820).

[5] Jones, E. J. "Ada Bindings to the Xt Intrinsics and Motif Widget Set." Ada computer software source
code, 1991.

[6] Klabunde. Capt Garv W. An Animated Graphical Post vrocessor for the Saber Wargame. MS thesis,
AFIT/GCS/ENG/91D-10, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

[7] Klabunde, Gary W. and Mark A. Roth. Using Ada Bindings to the X Window System. Technical
Report AFIT/EN-TR-91-10, Wright-Patterson AFB OH: School of Engineering, Air Force Institute
of Technology (AU), December 1991.

[8] Myers, Brad A. and Mary Beth Rosson. "User Interface Programming Survey," SIGCHI Bulletin,
23:27-30 (April 1991).

[9] Verdix Corporation. VADS Connection. Technical Report. Chantilly, VA, August 1991.

[10] Wallnau, Kurt C. Ada/Xt Architecture: Design Report. Software Technology for Adaptable lReli-
able Systems (STARS) Contract F19628-88-D-0031, Publication No. GR-7670-1107(NP), Reston VA:
Unisys Corporation, January 1990 (AD-A228827).

[11] Wallnau, Kurt C. and others. Ada/Xt Toolkit, Version Description Document. Software Technol-
ogy for Adaptable Reliable Systems (STARS) Contract F19628-88-D-0031, Publication No. GR-7670-
1133(NP), Reston VA: Unisys Corporation, July 1990 (AD-A229637).

[12] Young, Douglas. The X Window System: Programming and Applications with Xt (OSFiMotif Edi-
tion). Englewood Cliffs NJ: Prentice Hall, 1990.

8

Author Information

GARY W. KLABUNDE is a systems analyst/programmer with 12 months experience in writing Ada user
interfaces using the X Window System. MARK A. ROTH is an associate professor of computer systems
in the Department of Electrical and Computer Engineering at the Air Force Institute of Technology. His
current research interests include wargaming simulation and database management systems. Both are
currently on active duty for the United States Air Force. Current addresses:

Capt Gary W. Klabunde
SCCC/SOSW
Offut AFB, NE

Maj Mark A. Roth
AFILT/ENG
Wright-Patterson AFB, O 45433-6583

rnroth vafit.af.miI

l li i i I I l I I I I I l i i i l I I i .9

DOCUMNTATON PGE j Form ApprovedRErP.JiT DO U E T TIN P G0MB No 0704-0188

Pwali,('eootlmq 0turad '0' tpII '.(0l eCIOnlO ;flOrfmhtiOf -s fi1810 toaefe'' mou oer Mfl normudljl tnle t.Me for r,PV.iml instructions. seacFCinq esist~flq oat& sourc
qatl'efnd3 and M9'rt3fAnq In@ W8t needed. ano Con'l)eftgn t' rMIP~n0 imp rolclitot' 0, n tim t Iot n d aComment% 'eqarding t"@I DUOrt estimate of antv OtlMer Ofe 0 t'
coltecton of ,,t-inatron, .flvodit' $qqCjti~n$ tot reowc;nq tn,j o,.roen tIC ifiasmnnqton meaddlref% 'Se'ces. borectofate for .nlorh,,aton ODCwations and Reports iji 5 ettefon
Davi ,aom. Suite 120A Arl,"ton j A 2 202.4 302 an* lt tm Offire nt M..naoempnt ano duoup, P,%cerworw Apourtion Prol (0 O704.0 168) Vasr,,naon :,C 20SO03

.AENCY USE ONLY (Leave bidrtk) I2. REPORT DATE 99 13. REPORT TYPE AND DATES COVERED
30 December 1991 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Ada Interfaces to the X Window System

6. AUTHOR(S)
Gary WV. Kiabunde, Capt, USAF
Mark A. Roth, Maj, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Air Force Institute of Technology, NNPAFB 011 45433-6583 REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGi MONITORING

Air Force Wargaming Center AGENCY REPORT NUMBER

AU CADRE/WG
Maxwell AFB AL, 36112-5532

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
This paper discusses some of the more significant accomplishments in accessing X from Ada programs. Particular
attention is paid to the bindings developed by Stephen Hyland formerly of Science Applications International
Corporation and E.J. Jones of Boeing Aerospace Corporation. A discussion is presented of how these bindings
were successfully used at the Air Force Institute of Technology for the design and implementation of a user
interface for the Saber computer wargame. The paper ends with a description of the limitations of the bindings.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada, X Windows, Motif, Ada Bindings 10
16. PRICE CODE

17. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE I OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFTEL UL

NSN 7540-01-280-5500 Standard ;orm 298 (Rev 2 89)
P$-1 t0.' A4. Z 41

